
JOURNAL OF COMPUTATIONAL PHYSICS 47, 258-280 (1982)

The Solution of Linear Complementarity Problems
on an Array Processor

C. W. CRYER*’

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge CB3 9E W, England

P. M. FLANDERS, D. J. HUNT, AND S. F. REDDAWAY

Research and Advanced Development Centre, International Computers Limited,
Stevenage, Hertfordshire SGl 280, England

AND

J. STANSBURY *

Computer Sciences Department, University of Wisconsin-Madison,
Madison, Wisconsin 53706

Received January 29, 1980; revised April 13, 1982

The Distributed Array Processor (DAP) manufactured by International Computers Limited
is an array of l-bit 200.nanosecond processors. The Pilot DAP on which the present work
was done is a 32 x 32 array; the commercially available machine is a 64 x 64 array. We
show how the projected SOR algorithm for the linear complementarity problem Aw > b,
M? 3 0, w’(Aw - b) = 0, can be adapted for use on the DAP when A is the Jnite-dtsrence
matrix corresponding to the difference approximation to the Laplace operator. Application is
made to two linear complementarity problems arising, respectively, from two- and three-
dimensional porous flow free boundary problems.

1. INTRODUCTION

An LCP (linear complementarity problem) is a problem of the form: Find an n-
vector w = (wi) satisfying

Aw>b, (l.la)

w > 0, (l.lb)

wT(Aw - b) = 0, (l.lc)

where b = (bi) is a known real n-vector and A = (aij) is a known real n x n matrix.

* Sponsored by the National Science Foundation under Grant No. MCS77-26732.
’ Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

258
002 l-999 l/82/080258-23$02.00/0
Copyright 0 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

DISTRIBUTED ARRAY PROCESSORS 259

Linear complementarity problems arise in many contexts (Balinski and Cottle [2 I).
In particular, there is a connection between linear complementarity problems and
variational inequalities (Cottle, Giannessi, and Lions [5], Cryer and Dempster [9]).

Many problems in continuum mechanics can be reformulated as variational
inequalities (Duvaut and Lions [IO], Kinderlehrer and Stampacchia [20]), which,
when discretized, reduce to linear complementarity problems of the form (1.1) with
special features.

(1) A is large matrix, perhaps of order 25,000.

(2) A is a finite-difference or finite-element matrix; in particular, A is sparse
with a great deal of structure. (1.2)

(3) A large percentage of the elements of the solution w are nonzero.

Because of these special features, the standard methods of solving linear complemen-
tarity problems are not very efficient, and methods of solution have been developed
which take advantage of the structure of A: projected SOR (Cryer [7], Glowinski
[141); modified block SOR (Cottle, Golub, and Sacher [6]); multigrid projection
(Brandt and Cryer [3]); and generalizations of projected SOR (Mangasarian 1211).
Cryer [8] briefly surveys much of this work.

In the present paper we consider the use of the parallel computer DAP to solve
linear complementarity problems with the features (1.2). The DAP (Distributed
Array Processor, manufactured by International Computers Limited), which is an
SIMD array of typically 64 X 64 processors, is described in Section 2. In Section 3
we describe the implementation on the DAP of projected SOR to solve a linear
complementarity problem derived from a two-dimensional porous flow free boundary
problem, and in Section 4 we extend this work and solve a linear complementarity
problem derived from a three-dimensional porous flow free boundary problem. In
Section 5 we comment on possible future developments, and the overall conclusions
are in Section 6.

2. THE PILOT DAP (DISTRIBUTED ARRAY PROCESSOR)

The present work was carried out on the Pilot 32 x 32 DAP at Stevenage,
England, and we shall describe this machine first. A 64 x 64 version is available, and
the minor differences between the two machines are indicated at the end of this
section.

DAP Hardware

The essential features of the Pilot DAP hardware are as follows (Flanders et al.
I12], Reddaway [23]):

(1) A 32 x 32 array of identical processing elements (PEs) with a cycle time
of 200 nanoseconds.

581/47/2-l

260 CRYER ET AL.

(2) Each PE has a one-bit adder, 2K bits of storage, and three one-bit registers
(a general purpose register for accessing data and performing arithmetic; a carry
register; and an activity control register).

(3) Each PE is connected to its four neighboring PEs (North, South, East, and
West). In a given cycle all PEs access their neighbor in the same direction (deter-
mined by the program). In addition, the PEs are linked by row and column highways
which connect together all the PEs in each row and column.

(4) There is a master control unit (MCU) which broadcasts instructions to all
the PEs. All PEs can perform the same instruction simultaneously, but certain
instructions are only effective if the activity control register is true.

DAP Software

A program to run on a DAP system normally comprises a standard FORTRAN
program and a number of subroutines and functions written in an array processing
extension of FORTRAN known as DAP-FORTRAN (Flanders [111, Gostick [151,
ICL [191). The standard FORTRAN is executed by the host computer and provides
mainly input-output and overall control. The DAP-FORTRAN is executed by the
DAP and provides high speed computation. Data is shared between them using
common blocks held in DAP store. Some features of DAP-FORTRAN are described
below.

In addition to the data types of FORTRAN, DAP-FORTRAN has two new data
types: vector and matrix. With a 32 x 32 DAP, a vector has 32 components and a
matrix has 32 x 32 components; the components can be real, integer, or logical.

For example, the data statements

REALU(),V , >,W(,5),X(, 93)
INTEGERA(,l),B(>,C(, 94) (2-l)
LOGICAL FLAGS(,2), MASK(,)

declare U (a real vector), V (a real matrix), W (an array of live real vectors), X (an
array of three real matrices), A (an array of one integer vector), B (an integer vector),
C (an array of four integer matrices), FLAGS (an array of two logical vectors), and
MASK (a logical matrix).

Expressions in DAP-FORTRAN consist of scalars, vectors, and matrices with the
usual unary and binary operations. Operations on vectors and matrices are performed
in parallel using all 32 x 32 PEs.

Operations between a scalar and a vector or a matrix cause implicit expansion of
the scalar to the necessary dimensions. For example, if M is a matrix of size 32 X 32
and S is a scalar, then M = M + S causes S to be implicitly expanded to size 32 X 32
with each element being equal to S; then the corresponding elements of “matrix” S
and matrix M are added in parallel and assigned to M in parallel.

Arrays of vectors and matrices may be used to construct more complex structures .
To process a vector or matrix array requires performing calculations on the
individual vectors or matrices in the array.

DISTRIBUTED ARRAY PROCESSORS 261

Selection and updating of parts of vectors and matrices can be performed using the
powerful indexing capabilities of DAP-FORTRAN. Matrix sections can be specified
by omitting subscripts along which all elements are to be taken. Using this, whole
rows or columns can be selected from matrices. For example, M(Z,) specifies the Ah
row of matrix M.

Shift indexing is a very useful feature of DAP-FORTRAN. For example, in a
simple solution of Laplace’s equation on a 32 x 32 grid we wish to replace each
element with the average of its four neighbors. This could be coded in FORTRAN
as:

DO 10 Z=2,31

DO lOJ=2,31

Y(Z, J) = (X(Z +

10 CONTINUE

l,J)+X(Z- l,.Z)+X(Z,.Z+ l)+X(Z,J- 1))/4.0

Further code would be needed to handle elements on the edges of the matrix.
The DAP-FORTRAN code is much simpler

x = (x(+3) + xc-3) +-q , +) +x() -))/4.0. (2-l)

The term X(+,) uses shift indexing. In particular, X(+,) specifies a matrix where
the (I, J) element is the (Z t 1, J) element of X, for 1 < Z < 32 and 1 < .Z < 32. Thus,
X(-t,) contains all the south neighbors ofX. Edge values (corresponding to
subscripts 0 or 33) are defined to be zero. As an alternative, cyclic geometry may be
specified by using a GEOMETRY statement.

Longer shifts can be performed by explicit system functions; for example,
SHS(X,Z) shifts the matrix X to the south Z positions. Note that since all the
updating is performed simultaneously, it is not necessary to write the results to
another matrix.

Logical matrices and vectors can be used to select elements from an array. For
example, if we wished to update only certain elements of X in statement (2.1), we
could set the corresponding elements of LM, a logical matrix, to true and all other
elements of LM to false. That is, if X(Z, J) is to contain the average of its four
neighbors, then LM(Z, J) is set to true. Otherwise, LM(Z, J) is false. Then the
following statement performs the required task:

X(LM) = (Jqt,) t X(-,) t X(, t) t X(, -))/4.0.

DAP-FORTRAN has a number of useful system functions whose arguments and
results may be scalars, vectors, or matrices. The ALTC, ALTR, MERGE, MAX, and
ABS functions will be briefly described since these are used in the programs in this
paper.

‘ihe functions ALTC and ALTR return logical matrices. If C is the argument to
ALTC, then the first C columns of the result matrix are set to false, the next C
columns to true, the next C columns to false, etc. ALTR performs similarly for rows.

262 CRYER ET AL.

The function MAX (now named MAXV) returns a scalar equal to the largest
number in its vector or matrix argument. The function ABS returns a vector or
matrix containing the absolute value of every element in its argument.

The function MERGE takes three arguments and returns a matrix. The first two
arguments are matrices (or implicitly expanded scalars) and the third argument is a
logical matrix. If the (I, .Z) element of the logical matrix is true then the (I, J) element
of the result matrix is set equal to the (I, J) element of the first matrix; otherwise, it is
set equal to the (I, J) element of the second matrix.

Examples of DAP-FORTRAN programs are given in Sections 3 and 4.

DAP Arithmetic

When a DAP-FORTRAN program is executed by the DAP, expressions involving
only scalars are executed sequentially, but operations on vectors and matrices are
performed in parallel by the PEs.

The DAP memory can be visualized as a cuboid, with 2 K horizontal planes, each
plane being a 32 x 32 square of bits. The 32 x 32 array of PEs lies on top of the
cube, and each column of 2 K bits belongs to the PE above it.

Two storage modes are used in DAP-FORTRAN, vertical and horizontal. Scalars
and vectors are stored in horizontal mode while matrices are held in vertical mode.

In vertical mode, each number is held entirely within the store of one PE with
successive bits in successive store locations. Thus, for an integer matrix, the sign bit
of every element in the matrix would be held in the same store address of each PE.

In horizontal mode, a number is spread along a row of PEs. Thus, a scalar
occupies one row while a vector occupies 32 rows. DAP instructions are also stored
in this format.

All arithmetic is carried out using subroutines. Some operation times for 32 bit
numbers are given in Table I.

TABLE I

Average DAP-FORTRAN Arithmetic Times for the Pilot DAP

Operation Matrix Vector Scalar

Floating point addition

Floating point multiplication

Floating point multiplication
by a scalar

One shift of a real matrix,
e.g., x(+3)

Move a floating point matrix

Logical AND

Logical mask

14&18O~s 54p 2lps

315/e 50/e 34p

6Cb2OOps 40,us -

15,Lls 2NS -

15p 2PS 2P
2w 2P 2P
1 P 2YS -

Note. Times are slightly different on production DAPs.

DISTRIBUTED ARRAY PROCESSORS 263

It will be noted that vector arithmetic is faster than matrix arithmetic. This is
because a row of PEs is available for each vector component, while only one PE is
available for each matrix component.

Some of the quoted computation times are data dependent. In particular, matrix
multiplication by a scalar typically varies from 170 ,US to 200 ps depending upon the
distribution of zeros in the binary representation of the constant; for special scalars
such as 0.5 or 3 the multiplication time can be as low as 60,~s.

Host-DAP Interface

The sequence of operations for compiling and running DAP programs is as
follows:

(a) The host computer compiles the host FORTRAN program and the DAP-
FORTRAN subroutines into host and DAP machine codes respectively.

(b) DAP machine code, incorporating all necessary low level subroutines, is
loaded into DAP memory in horizontal mode where it occupies a few bits of each
PE’s memory. Host machine code is loaded into the host memory.

(c) Execution begins in the host and control is transferred to the DAP as
required by subroutine calls. On completion of DAP processing, the host resumes
execution at the point following the call.

Detailed information on the Pilot DAP relevant to understanding the programs in this
paper is given in the Appendix.

The Production DAP

The current production DAP is generally similar to the Pilot but differs as follows:

(a) there are 4096 PEs arranged in a 64 x 64 array;

(b) each PE has 4 K bits of memory;

(c) arithmetic operations differ somewhat in timing but are overall a little
faster;

(d) coupling between host and DAP is more direct so the interface is simpler
than indicated in the Appendix.

3. NUMERICAL SOLUTION OF A TWO-DIMENSIONAL FREE BOUNDARY PROBLEM

The flow of water through a porous dam is a well-known model problem. Water
seeps from a reservoir of height H through a rectangular dam of width L to a
reservoir of height h. Part of the dam is saturated and the remainder of the dam is
dry. The wet and dry regions are separated by an unknown free boundary r which
must be found as part of the solution (Fig. 3.1).

264 CRYER ET AL.

WO.0) C=(L,O)

FIG. 3.1. Flow through a porous rectangular dam R.

As shown by Baiocchi [11, the problem can be formulated as follows: Find u on
the rectangle R = ABCF such that

-Q2u > -1, on R, (3. la)

U>O on R, (3.lb)

u(-vu + l)=O on R; (3.k)

and

u= g=(H-y)2/2, on AB,

= (h - YY/L on CD,

= [H2(L -x) + h*x]/2L, on BC,

= 0. on DFA.

(3.2)

The wet region of the dam consists of the points where u > 0 and the dry region
consists of the points where u = 0.

When the problem (3.1), (3.2) is approximated using the classical five point
difference approximation for the Laplace operator, one obtains an LCP of the form
(l.l), where the matrix A and right hand side b are the same as those that would be
obtained if the Dirichlet problem

.-v2u = -1 on R,

u=g on 8R
(3.3)

were approximated by the finite difference equation Aw = b. More precisely, let an
M x N grid with gridlength dx be superimposed upon R, and let the values of u and g
at the point ([j - 1] dx, [i - 1] dx) be denoted by uij and g,, respectively, for 1 <
i<M and 1 <j,<N. Then (1.1) takes the form

DISTRIBUTED ARRAY PROCESSORS 265

4Wij-Wi+,,j-Wi-,,j-Wi,j+l-Wi,j-t~-(dX)z for 1 < i < it4, 1 < j < N,
(3.4a)

wij > 0 for l<i<M, l<j<N, (3.4b)

wij(4Wij-Wi+,,j-Wi-~,j-Wi,j+~-wi,j-~ + (AX)*)=0
for 1 <i CM, 1 <j< N, (3.4~)

wij = gij for ((j- l)dx,(i- l)dx)E%. (3.4d)

We discuss below two iterative methods for solving (3.4), the projected Jacobi
method and the projected SOR method. The projected Jacobi method is much slower
than the projected SOR method, but is trivial to implement on the DAP and serves as
a useful introduction to DAP programming.

TABLE II
The DAP Subroutine JACOBI

SUBROUTINE JACOBI
LOGICALMASK(,), B’.SIGN(,)

REAL W(,),Z(,)

REAL INDEX()
EQUIVALENCE(B’, WSIGN)

Declare logical 32 x 32 matrices, MASK and
WSIGN

Declare real floating point 32 x 32 matrices W and
Z

Declare a real floating point 32-vector INDEX.
Declare the logical matrix WSIGN equivalent to the

first bit, the sign bit, of the matrix W.
HEIGHT = 3 1.0
WIDTH = 31.0
DO 101= 1,32
INDEX(I) = (32 - I)/31.0
CONTINUE
w=o
TEMP = HEIGHT * HEIGHT t .5
W(1,) = TEMP * INDEX

W(, 1) = TEMP * INDEX * INDEX
MASK = .TRUE.
MASK(1,) = .FALSE.
MASK(32,) = .FALSE.

MASK(, 1) = .FALSE.
MASK(,32) = .FALSE.
DO50I= 1,100
z= W(+,)+ W(-,)+ W(,+)

+w(,-)-1.0
W(MASK) = .25 * Z
W(MASK .AND. WSIGN) = 0.0

CONTINUE
END

Initialize INDEX vector.

Clear matrix W

Set values of the matrix W equal to g on bottom
PC).

Set values of the matrix W equal to g on left (AB).

Set the matrix MASK to be true at interior points
and false at boundary points.

Start of main loop
Sum neighbors and store in Z matrix.

Transfer average to W at interior points.
Project by setting W = 0 at points where MASK is

true and the sign of W is negative.

266 CRYER ET AL.

TABLE III

Statement Operations Time (us)

Z=W(+,)+W(-,)+W(,+)
+ W(,-)- 1.0

W(MASK) = .25 * Z

W(Mz4SK .AND. WIGN) = 0.0

DO501=1,100

4 floating point matrix
additions/subtractions

4 index shifts
1 scalar-matrix assignment

1 floating point matrix multiplication
by a special constant

1 logical mask

1 logical AND
1 logical mask
1 scalar-matrix assignment

640
60
15

70
1

2
1

15

7 -
811 -

The Projected Jacobi Method

Let W(O) = (wi;‘) b e an initial guess for the solution w = (wij) of (3.4). One
generates a sequence of approximations wck) = (w$“), k = 1, 2,...,

Z!k) zz w!k)
IJ I-l,j+ wlk:l,j 1,~ I + W!k!- + WV!

,,J+ 1 - (dx>2Y (3.5a)

W!k+ l/2) - IZ(k)
lJ -4 ijy (3.5b)

w!k+ ‘) = max(O, WC+ I”)),
IJ for 1 <i < M and 1 < j < N; (3.5c)

wj;+ ‘) = gij, for ((j - 1)4x, (i - 1)dx) E aR. (3.5d)

It is known that the projected Jacobi method will converge (Mangasarian [2 1 I).
If M < 32 and N < 32, then the gridpoints can be regarded as a subset of a

32 x 32 array, and one PE can be associated with each gridpoint. Defining wck),
W(k+ I), and Z(k) as real DAP-FORTRAN matrices, the computation (3.5) is trivial to
implement on the DAP.

In Table II we list a DAP subroutine JACOBI which solves the dam problem for
the case h = 0, H = 31, L = 31, M = N = 32, and dx = 1. This subroutine could be
called by a host program, which could then print the answers in the matrix W.

Using the operation times given in Table I, we can readily estimate the time
required per iteration in the main loop of the JACOBI subroutine (see Table III).

From Table III we see that one projected Jacobi iteration over the whole 32 X 32
grid requires 8 11 ,us.

The Projected SOR Method

Let w(O) = (w$“) b e an initial guess for the solution w = (wij) of (3.4). In the usual
implementation of projected SOR, one generates a sequence of approximations
wck) = wij) as follows:

DISTRIBUTED ARRAY PROCESSORS 267

z!k’ = wy;,:, + Wj$j + wyy + w$+ 1 - (Ax)*,
V

(3.6a)

w!!+“*) = w$’ + (@’ - 4$)/4
IJ

= (o/4) zp + (1 - co) wp, (3.6b)

WIT+ l) = max{O, wj$!+ l/*)}, for 1 (i < M and 1 < j < N, (3.6~)

where o is a constant, the over-relaxation parameter.
It is known that the iteration (3.6) converges for all initial guesses w(O) iff

0 < w < 2 (Cryer [71, Glowinski [141). The implementation (3.6) is not suitable for
parallel computation because the new values wckt ‘) cannot be computed
simultaneously* w!k+ ‘! and w!“~?‘~ must be known before wiJ+‘) can be computed.

There is, ho\;re:er,i’i simple ‘but ingenious way of making SOR suitable for parallel
computation. In the implementation (3.6), we order the gridpoints by rows and
columns (Fig. 3.2a). Instead, let us visualize the gridpoints as forming a red-black
chess board and number first the red points and then the black points (Fig. 3.2b).

Applying projected SOR to the points numbered as in Fig. 3.2b we find that each
projected SOR iteration can be broken down into two stages: in the red (first) stage
projected SOR is applied to the red points; and in the black (second) stage projected
SOR is applied to the black points.

Red stage.

Z$-‘) = W;k;;‘jc’o + w;~;‘j”“’ + wj~i’f;‘“’ + Wjfjb’;ck) - (A~>*, (3.7a)

WI?; “2,wd) = ((jJ/4) zj$red) + (1 - w) Wjyd), (3.7b)

W(kk’.‘ed) = max(o, wjfj+ Wed)}.
1.J (3.7c)

Black stage.

Z+black) = W!k+ ITred) + Wjkt I:rW + Wjkji$.red) + W;kjf_lired) _ (42,

WjJ+ I;*,black) = (;;;;zj;.“‘.c”’ ; ;I _ o> WG&lack),

(3~~)

(3.8b)

(3%)

Each stage can be carried out in parallel, with the red (black) processors working
and the black (red) processors idle.

FIG. 3.2. Ordering of gridpoints (for a 4 x 4 grid) (a) usual, (b) red (0) and black (0).

268 CRYER ET AL.

This idea of using the red-black ordering for parallel processors has appeared
several times in the literature (Heller [161). Its use on DAP was first suggested by
Hunt [171. (In Europe, white-black chessboards are more usual than red-black ones).

In Table IV we list a DAP-FORTRAN subroutine PROJSOR for implementing
the heart of the algorithm (3.7), (3.8). The subroutine is provided with several input
parameters with obvious meanings. In addition, two logical matrices are provided as
input: the logical matrix MASKMASK is true at gridpoints in the interior of the dam,
and false elsewhere; the logical matrix MASK is true at black gridpoints and false at
red gridpoints. Finally, the values of the real matrix W at the boundary points c?R
must be computed using (3.4d) before PROJSOR is called.

The computation time for one pass through the main loop of the subroutine

TABLE IV

The DAP Subroutine PROJSOR

COMMON/RMAT/W(,)
COMMONjRSCAfMAX DIFF, OMEGA, EPSILON, DAM WIDTH, DAM HEIGHT
COMMON/ISCA/NUMB ITERATIONS, NUMB ROWS, NUMB COLS
COMMON/SUBLMAT/MASK(,), MASK MASK(,)
REAL W, MAX DIFF, OMEGA, EPSILON, DAM WIDTH, DAM HEIGHT
LOGICAL MASK, MASK MASK
INTEGER NUMB ITERATIONS, NUMB ROWS, NUMB COLS

REAL Z(,), GRIDZ, W(,), SA VE W(,)
REAL ALPHA, BETA
INTEGER NUMB TIMES
LOGICAL DONE, WSIGN(,)
EQUIVALENCE (WSIGN, W)

W(WSIGN) = 0.0

Local variables.

ALPHA = OMEGA * .25
BETA = 1.0 - OMEGA
GRID2 = (DAM HEIGHT/NUMB ROWS) ** 2

40 SAVEW=W
NUMB ITERATIONS = NUMB ITERATIONS + 1
DO 45 NUMB TIMES = I, 2

1 MASK(MASK MASK) = .NOT. MASK

2 z= w+ W(-,-)
3 Z=Z(+,)+Z(,+)-GRID2
4 W(MASK) = ALPHA * Z + BETA * W

5 W(WSIGN .AND. MASK MASK) = 0.0
45 CONTINUE

MAX DIFF = MAX(ABS(SA VE W - W))

DONE = (MAX DIFF .LE. EPSILON)
IF (NOT. DONE) GO TO 40

RETURN

Ensure that W is nonnegative everywhere.
Calculate the constants that are needed

later on.

Start main loop.
Save the old value of W.

Reverse state of MASK.

Calculate Z on only the red (or black)
points as determined by the MASK.

Project

Find maximum difference between old
and new.

Check if desired accuracy is attained.

DISTRIBUTED ARRAY PROCESSORS 269

TABLE V

Estimated Computation Time for the Inner Loop of PROJSOR

Statement Operations Time @s)

I MASK(MASKMASK) = .NOT. MASK

2 z= w+ W(-,-)

3 Z=Z(+,)+Z(,+)-GRID2

4 W(MASK) = ALPHA * Z
+BETA* W

5 W(WSZGN .AND. MASK
MASK) = 0.0

DO 45 NUMB TIMES = 1,2

1 logical mask
1 logical negation
1 logical store

1 index shift two places
1 floating point matrix addition

2 index shifts
1 floating point matrix addition
1 floating point matrix

subtraction
1 scalar-matrix assignment

1 floating point matrix addition
2 floating point matrix

multiplications by a constant
1 logical mask

1 logical AND
1 logical mask
1 scalar-matrix assignment

21
160

30
160

160
15

160

PROJSOR is estimated in Table V, from which it follows that each PROJSOR
iteration, which requires two passes through the loop, takes about 2 x 1135 ps =
2.27 ms. To check this estimate, the average execution time per iteration in the
subroutine PROJSOR was obtained by measuring (on a real external physical clock)
the time required for a large number of iterations for the dam problem with H = 24,
h = 0, L = 16, and Ax = 1. (This particular problem was chosen because it is a test
problem which has been solved by many authors). The measured time per iteration
on the Pilot DAP was 2.2 ms, as compared to the estimated time of 2.27 ms.

We conclude this section with some comments.

(1) For comparison, the dam problem with H = 24, h = 0, L = 16, and Ax = 1
was also solved on the UNIVAC 1180 at the University of Wisconsin, using the
conventional ordering of gridpoints and an optimizing compiler with single precision
arithmetic (36 bits), and the time per iteration was found to be 5.29 ms. For this
problem the Pilot DAP was therefore 2.4 times faster than the UNIVAC 1180.

It should be noted that for this problem only 25 x 17 = 425 of the 1024 DAP PEs
were used. On a 31 x 3 1 region the Pilot DAP would be six times faster than the
UNIVAC 1180.

(2) In general, one expects to be able to predict DAP execution times to within

270 CRYER ET AL.

about 5 o/, because DAP programs have little overhead and spend almost all their
time in computation.

(3) Since DAP floating point operations are relatively expensive, it is
worthwhile optimizing the code. (Readers who used early computers which also had
relatively slow arithmetic operations may feel nostalgic). An example of such
optimization occurs in the subroutine PROJSOR (see Table IV). The computation
(3.7a) could have been implemented as:

z= WC+,)+ w(-,)+ W(,+)+ W(,-)-GRID2

which requires three additions and one subtraction, and takes

4(15) + 4(160) + 15 = 715 ps.
(shifts) (additions) (scalar-matrix assignment)

By sharing intermediate results between PEs, however, the amount of arithmetic can
be reduced; the implementation in PROJSOR is

z= w+ W(-,-)

Z=Z(+,)+Z(,+)-GRZD2,

which is estimated at only 546,~. It should be noted that both implementations use
only half the PEs for arithmetic at any one time. Larger grids or three-dimensional
problems (see Section 4) can use all the PEs simultaneously.

(4) The UNIVAC 1180 was used for comparison, because this was readily
available. It would be of interest to have timings on a computer such as the Cray 1.

4. NUMERICAL SOLUTION OF A THREE-DIMENSIONAL FREE
BOUNDARY PROBLEM

A three-dimensional extension of the dam problem of Fig. 3.1 was introduced by
Stampacchia [24] (see also France [13 I). Water seeps through a porous dam in a
rectangular channel of width u and height H. The walls of the dam are vertical but
the thickness of the dam is variable, so that the dam occupies the region

Q, = 0, x (0, fq, (4.1)

where the horizontal cross section Q, is of the form

Q, = ((4 v): 0 < x ‘c a, cpl(X> < Y < ~z(X>l.

In the specific problem considered here, .R, is the L-shaped region

Q, = (0,ED)x (0,FE) U [ED,AP)x (O,AB),

(4.2)

(4.3)

DISTRIBUTED ARRAY PROCESSORS 271

I

FREE SURFACE

UPSTREAM

DOWNSTREAM

FIG. 4.1. Flow through a three-dimensional porous dam with L-shaped horizontal cross section.

where the points A, B, C, D, E, and F are as shown in Figure 4.1. The upstream
water height is H and the downstream water height is h.

As shown by Stampacchia 1241, the problem can be formulated as follows: Find u
on the region LI, such that:

-v% = -[u,, + uyy + u,,] > -1 in Q,,

and
u= g=+(H-z)*,

= 4(h - z)2,

= 0,

= 0,

and
= a(4 Y),

u, = u, = 0,

U>O in Q,,

u(-v*u+ l)=O in Q,;

on the upstream face AA, F, F,

on the downstream face below water level
BoW’,E,E,D,C,B, >

on the downstream face above water level
B,C,D,E,EDCB,

on the top ABCDEF,

on the bottom A,B,C,D,E,F,;

on the sides ABB,A, and EFFoE,.

(4.4a)

(4.4b)

(4.4c)

(4.5)

(4.6)

Here a(x, y) is the solution of the two-dimensional mixed boundary value problem

(4.7a)

a = iH2,

= ;h2,

on A$,,,

on B, COD&, ,
(4.7b)

a, = an = 0, on A,B, U E,F,. (4.7c)

212 CRYER ET AL.

To solve problem (4.4t(4.7) numericaly, we introduce a grid with Ax = Ay = AZ
and denote the approximation to u([i - 2]Ax, [j - 1]Ay, [k - 1]Az) by wijk, and the
approximation to a([i - 2]Ax, [j- l]Ay) by wii = wijl, for 2 <i <M - 1 and 1 <
j < N. As in Bruch [4], the computation proceeds in two stages.

Sruge I. The two-dimensional problem (4.7) is approximated by replacing
differential equation (4.7a) by the difference equations

4W[j- Wi+l,j- Wi-l,j- Wi,j+l - Wi,,j-1 =O* (4.8)

The Dirichlet boundary conditions (4.7b) are satisfied by computing and storing the
values of wij, = aij on A,F, and B,C,D,E,. The Neumann conditions (4.7~) are
satisfied by introducing two fictitious rows of gridpoints, adjacent to A,B, and E,F,
respectively, and requiring that the values of w on a fictitious row should be equal to
the values of w on the corresponding interior row; that is, w,~ = wu and w,,,.~ =
W M-z,jv for 1 < .i<N.

The resulting system of equations is solved using a simple modification of the
subroutine PROJSOR (see Table IV): the term -GRID2 is dropped from statement
number 3; statement number 5 is deleted; and the statements

Wl,) = w3, 1,

W(M, > = WV4 - 2, 1,
(4.9)

are inserted between statements number 1 and 2, so as to make the values at the
fictitious points equal to the corresponding interior values;

Stage II. The three-dimensional problem (4.4) is approximated by the LCP

6Wi,j,k > wi+ I,j,k + Wi-l,j,k + wi,j+ 1.k + Wi,j-l.k

+ Wi.j,k- I + wi j k+ I - (AX>*~ 1 1 (4.lOa)

Wi,j,k > 0, (4. lob)

Wi,j,k[6Wi,j,k - wit 1,j.k - Wipl,j,k - wi,j+ 1.k - wi,j- 1.k

-Wijk+l-Wijk-l+(Ax)*]=O. 1 9 , , (4.1Oc)

The Dirichlet boundary conditions (4.5) are readily imposed, while the Neumann
conditions (4.6) are treated by introducing fictitious sides parallel to the sides
ABB,A, and EFF,E,, and requiring that the values of w on the fictitious sides be
equal to the values of w at the corresponding interior points.

To solve the LCP (4.10) we introduce a three-dimensional red-black partitioning of
the gridpoints, so that each red (black) gridpoint has six black (red) neighbors. (It
should be noted that the red/black ordering on any horizontal plane is the negation
of the red/black orderings on the adjacent horizontal planes.) As in the two-
dimensional problem treated in Section 3, each projected SOR iteration can be
broken down into two stages: a red stage in which projected SOR is applied to all the

DISTRIBUTED ARRAY PROCESSORS 273

red points in the three-dimensional w array, followed by a similar black stage. In
detail,

Red stage.

z$‘ed) = wjy;!i”.‘k”’ + w;“y;;;’ + wy;yy;“’ + wjy;y
+ W!k:black)

I,J,k+ 1 + w;yp:) - (Ax)*,

wl,+; ‘/2*red) = (4fj) $ired) + (1 - 0) w;?ired),

w!Jkkt ‘vred) = max{(), wiTk+ 1/2,red)}.

Black stage.

(4.1 la)

(4.1 lb)

(4.11c)

Zgb’ack) = wj$yy + w;y$’ + wi,j+,,k (kt I,red) + W!k+l.red)
,,J 1.k

+ w;fjjtkl;‘l’d) + wjfjy,r;d) - (Ax)*,

w$J ‘/*.black) = (46) Z;;i’-“ac’o + (1 _ w) Wjfi”lack),

(4.12a)

(4.12b)

To implement the algorithm (4.1 l), (4.12) it was assumed that the dimensions of
L!, were such that the gridpoints on any horizontal cross section of the dam could be
regarded as a subset of a 32 x 32 array. The solution w was stored as an array of
matrices, the matrix W(, , k) containing the values of w on the horizontal plane at a
height (k - 1) AZ. To control the parallel computation, two logical matrices were
used: MASKRB which is true at interior red gridpoints in the current horizontal cross
section and false otherwise; and MASKMASK which is true at interior points of Q,
and false otherwise.

The algorithm (4.11), (4.12) was implemented in two ways.

Implementation 1. During each red (black) stage the horizontal planes were
updated in turn, and on each plane the red (black) points were updated in parallel.

The computation of ztk) requires live additions and one subtraction. Given an
unlimited number of processors, n additions/subtractions require log, n steps, so that
six additions/subtractions require at least three steps. By taking advantage of idle
PEs, and remembering that, on the DAP, shift operations are much faster than
arithmetic operations, the DAP-FORTRAN subroutine in Table VI is an efficient
implementation of (4.1 l), (4.12) (compare Table IV). A full listing of the program is
available upon request from the authors.

The subroutine in Table VI uses the functions SHS(outh) and SHN(orth) to shift
W instead of the equivalent, but slower, statements (4.9).

Implementation 2. As in the three-dimensional magnetohydrodynamic code of
Reddaway [22] we rearrange the values of w. Horizontal planes are considered in
pairs, and the red points on each even-numbered plane are exchanged with the
corresponding black points on the next odd-numbered plane. As a result, instead of

274 CRYER ET AL.

TABLE VI

First Implementation of (4.11) and (4.12)

C THE MAIN LOOP - PROCESS ALL THE 2 PLANES

SUBROUTINE MAIN LOOP
COMMON/ISCA/TOPPLANE, M
COMMONIISCAlDAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT
INTEGER TOPPLANE, M
INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS
REAL DAMEPSILON, BOTTOMEPSILIN, OMEGA, MAXDIFF
COMMONJRSCAIDAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF
COMMON/RMAT/ W(, (25)
COMMON/SUBLMAT/MASKRB(,), MASKMASK(,)
LOGICAL MASKRB, MASKMASK
REAL SA=W(, 1, Z(, 1, Zl(>)
REAL MAXSOFAR, ALPHA, BETA, WIDGRIDZ, WIDTHGRID
INTEGER NUMBTIMES
LOGICAL TEMPMASK(,), DONE, WSIGN(,)
EQUIVALENCE(WSIGN, Z)
ALPHA = OMEGA * 1.0/6.0
BETA = 1.0 - OMEGA

C
C WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET TO 1.0
C

NUMBITERS = 0
WIDTHGRID = 1.0
WIDGRID2 = WIDTHGRID * WIDTHGRID

C SAVE THE MASKRB FOR LATER RESTORATION
C

TEMPMASK = MASKRB

MAXDIFF IS THE MAXIMUM DIFFERENCE BETWEEN SAVEW
C AND W(, ,K)AFTER W(> >K)
C HAS ITS RED (OR BLACK) VALUES CHANGE (FOR ALL K)

I MA XDIFF = 0.0
NUMBITERS = NUMBITERS + 1
MASKRB = TEMPMASK
DO 30 NUMBTIMES = 1,2

C
C ITERATE FROM THE 2ND PLANE TO THE TOP PLANE

DO 20 K = 2, TOPPLANE
SAVEW= W(, ,K)

C
C REVERSE RED/BLACK FOR SUCCESSIVE PLANES
L

MASKRB(MASKMASK) = .NOT. MASKRB

Table conrinued

DISTRIBUTED ARRAY PROCESSORS

TABLE VI (continued)

215

C
C SUM THE SIX NEIGHBORS

SAVEW(1,) = SHN(S4 VEB’, 2)
SA VEW(M,) = SHS(SA VEB’, 2)
Z=SAVEW(-,-)
Zl = SAVEW
Zl(MASKRB)= W(, , K + 1)
Z(MASKRB) = W(, , K - 1)
z=z+z1
Zl=Z(,f)
Zl(.NOT. MASKRB) = - WIDGRIDZ
z=z+z1
z=z+z(+,)

C
C STORE THE AVERAGE OF THE SIX NEIGHBORS IN W
C ONLY IN THE RED (OR BLACK) CELLS
C

Z=ALPHA*Z+BETA*SAVEW
Z(WSIGN) = 0.0
W(MASKRB, K) = Z

C
C FIND THE MAXIMUM DIFFERENCE ON THIS PLANE
C

MAXSOFAR = MAX(ABS(SA VE W - Z), MASKRB)
IF (MAXSOFAR .GT. MAXDIFF) MAXDIFF = MAXSOFAR

20 CONTINUE
C
C REVERSE STATE OF ORIGINAL MASKRB FOR THE 2ND PASS
C THROUGH THE PLANES
C

MASKRB(MASKMASK) = .NOT. TEMPMASK
30 CONTINUE

DONE = (NUMBITERS .GT. DAMMAXITERS) .OR. (MAXDIFF .LE. DAMEPSILON)
IF (NOT. DONE) GOT0 1
MASKRB = TEMPMASK
RETURN
END

C
C

having n planes, each containing red and black points in a checkerboard pattern, we
have n/2 planes of red points interleaved with n/2 planes of black points. This makes
it possible to use simultaneously all interior PEs for arithmetic.

The corresponding subroutine is given in Table VII. In the full program, to save
time, the test for convergence was executed only every TIMES iterations, where
TIMES is an input parameter.

The subroutine in Table VII assumes that there is an even number of planes. To

581/47/2-l?

276 CRYER ET AL.

TABLE VII

Second Implementation of (4.11) and (4.12)

THE MAIN LOOP - PROCESS ALL THE Z PLANES

SUBROUTINE MAIN LOOP
COMMON/ISCA/TOPPLANE, M
COMMON/ISCAlDAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT
INTEGER TOPPLANE, M
INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, TIMES
REAL DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF
COMMONjRSCAlDAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF, TIMES
COMMONIRMA T/W(, ,25)
COMMON/SCJBLMAT/MASKRB(,), MASKMASK(,)
COMMON/ WORK/Z, WK
LOGICAL MASKRB, MASKMASK
REAL sAVEW(>),Z(3)>Zl(3 1, WKPl(> 1, WK(1),MAXD(,)
REAL MAXSOFAR, ALPHA, BETA, WIDGRIDZ, WIDTHGRID
INTEGER NUMBTIMES
LOGICAL TEMPMASK(,), DONE, WSIGN(,), TEST, NOTTEST
EQUIVALENCE(WSIGN, Z), (Z, Zl), (WK, WKPl)

ALPHA = OMEGA * l.OJ6.0
BETA = 1.0 - OMEGA

C
C WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET TO 1.0
C

NUMBITERS = 0
WIDTHGRID = 1.0
WIDGRID2 = WIDTHGRID * WIDTHGRID

C
c
L

1 TEST = TIMES .EQ. I
NOTTEST = .NOT. TEST
ITIMES = TIMES
MAXD = 0.0

C

C ALTER ALL THE ODD NUMBERED PLANES:
2 KM2=1

DO 20 K = 2, TOPPLANE, 2
SAVEW= W(, ,K+ 1)
WK= W(, ,K)
WK(1,) = SHN(WK, 2)
WK(M,) = SHS(WK, 2)
Z = WK + WK(--, -)
Z = (Z(+,) + Z(, +) t WK + MERGE(W(, , KM2), W(, , K t 2), MASKRB)

- WIDGRIDZ) * ALPHA + SA YEW * BETA
Z(WSIGN) = 0.0
W(MASKMASK,K+ l)=Z
IF (NOTTEST) GOT0 20
Zl =ABS(SAVEW-Z)
MAXD(Z1 .GT. MAXD) = Zl

DISTRIBUTED ARRAY PROCESSORS

TABLE VII (continued)

20 KM2=K
C
C
C ALTER ALL THE EVEN NUMBERED PLANES:

277

21
C
C

C
3

C

4

DO 21 K = 2, TOPPLANE, 2
SAVEW= W(, ,K)
WKPl=W(, ,K+l)
WKPl(1,)=SHN(WKPl,2)
WKPl(M,) = SHS(WKPl,2)
2 = WKPl + WKPl(-, -)
2 = (Z(+,) + Z(, +) + WKPl f MERGE(W(, , K + 3), W(, , K - I), MASKRB)

- WIDGRIDZ) *ALPHA + SAVEW * BETA
Z(WSIGN) = 0.0
W(MASKMASK, K) = Z
IF (NOTTEST) GOT0 21
Zl =ABS(SAVEW-Z)
MAXD(Z1 .GT. MAXD) = Zl
CONTINUE

ITIMES = ITIMES - 1
IF (ITIMES .GT. 1) GOT0 2
IF (ITIMES .EQ. 0) GOT0 3
TEST = .TRUE.
NOTTEST= .FALSE.
GOT0 2

NUMBITERS = NUMBITERS + TIMES
MAXDIFF = MAX(MAXD, MASKMASK)
IF (MAXDIFF .LT. DAMEPSILON) GOT0 4

IF (NUMBITERS .LT. DAMMAXITERS) GOT0 1
RETURN
END

avoid additional testing, it is assumed that a copy of the top plane is stored above the
top plane.

The two implementations were run on the problem with H = 10, h = 0, AF =
FE = 20, CD = BC = 10, which was chosen because it had previously been solved by
Bruch 141. For comparison, the problem was also solved on the UNIVAC 1180 using
single precision arithmetic and optimized FORTRAN code. The measured
computation times per projected SOR iteration (including both red and black stages)
were:

Implementation 1: 32 ms,
Implementation 2: 16.0-l 8.2 ms (dependent on frequency of convergence tests),
UNIVAC 1180: 34 ms,

278 CRYER ET AL.

so that Implementation 2 on the Pilot DAP is about two times faster than the
UNIVAC 1180. The estimated time per SOR iteration (Implementation 2) was found
as in Table V, and was found to lie between 15.4 and 17.4 ms, depending upon the
frequency of convergence tests.

For this problem, only 383 (i.e., 21 X 23 - 10 X 10) of the 1024 PEs were used.

5. FUTURE POSSIBILITIES

(a) For purposes of comparison we have used previously published problems
but they have dimensions which do not match the DAP array closely. In many prac-
tical problems, the resolution would be tailored to the DAP dimensions to achieve
higher performance.

(b) The programs presented are readily extensible to larger problems on
correspondingly larger DAPs such as the production 64 x 64; it is only necessary to
change the boundaries. The time to process one plane would be unchanged.

(c) Performance on small three-dimensional problems can be improved by
mapping several problem planes onto one DAP matrix.

(d) Problems with large horizontal dimensions can be mapped with each PE
holding a small neighborhood group of points. Performance improves because each
PE holds both black and red points (Hunt [181).

(e) Very large problems cannot be held entirely within DAP store. For
example, with four times as many points in a horizontal plane as there are PEs, the
limit is about 26 planes with 4 K bits per PE or about 122 planes with 16 K bits per
PE. With backing store, the transfers rates with N active problem planes in the DAP
can be minimized by advancing each plane (N - 2)/2 iterations per backing store
fetch. Hence it should be possible to achieve a balance between input-output and
processing times (Reddaway [221).

(f) Problems of this type offer possibilities for using fixed point arithmetic
(with suitable scaling) and using low precision for computing the iterative
corrections. This is much faster than floating point work and performance
improvements as large as a factor of ten are predicted without loss of accuracy in the
final solution.

6. CONCLUSIONS

We have demonstrated that two- and three-dimensional linear complementarity
problems can be solved on DAP with high performance and easy programming using
a version of projected SOR. There is scope for even higher performance and for
tackling a wide range of problem sizes.

DISTRIBUTED ARRAY PROCESSORS 279

APPENDIX: THE PILOT HOST-DAP INTERFACE

In the Pilot DAP system, the store of the DAP is not an integral part of the host’s
store as with the production DAPs. It is therefore necessary to explicitly move data
between the host and DAP, and this is achieved by using standard host FORTRAN
subroutines. The subroutine names begin with DAPTO or DAPFROM depending on
whether they move data into or out of the DAP. The remaining letters of the name
indicate the type (integer or real denoted by I or E) and rank (scalar, vector or matrix
denoted by S, V, or M) of the variable transferred. Parameters of DAPTO and
DAPFROM give the name of the host program variable and the location within the
DAP in terms of the name of the common area and the offset from the start of this
area.

Initiation of DAP processing is also less direct on the Pilot system with DAP-
FORTRAN subroutines being called via the standard host FORTRAN subroutine
DAPGO. A statement of the form:

CALL DAPGO(‘DAPSUB’, N)

will suspend execution of the host FORTRAN and transfer control to the DAP-
FORTRAN subroutine DAPSUB. Execution of the host FORTRAN is resumed after
DAPSUB and any further levels of DAP-FORTRAN subroutines have been
executed. The parameter N gives the maximum number of seconds allowed for DAP
processing.

ACKNOWLEDGMENTS

C. W. Cryer and J. Stansbury gratefully acknowledge the provision by International Computers Ltd.
of facilities for using the Pilot DAP at Stevenage, England.

REFERENCES

I. C. BAIOCCHI, Ann. Mat. Pura Appl. 92(4) (1972), 107.
2. M. L. BALINSKI AND R. W. COTTLE, Ed., “Complementarity and Fixed Point Problems,” North-

Holland, Amsterdam, 1978.
3. A. BRANDT AND C. W. CRYER, “Multigrid algorithms for the solution of linear complementarity

problems arising from free boundary problems,” Technical Summary Report No. 2 13 I,
Mathematics Research Center, Univ. of Wisconsin-Madison, 1980.

4. J. C. BRUCH, JR., Adv. Water Resow. 3 (1980), 115.
5. R. W. CO~LE, F. GIANNESSI, AND J. L. LIONS, Ed., “Variational Inequalities and Complementarity

Problems,” Wiley, New York, 1980.
6. R. W. COTTLE, G. H. GOLUB, AND R. S. SACHER, Appl. Math. Opfim. 4 (1978), 347.
7. C. W. CRYER, SIAM J. Control Optim. 9 (1971), 385.
8. C. W. CRYER, in “Proceedings, Seminar on Free Boundary Problems, Pavia, 1979” (E. Magenes,

Ed.), Vol. 2, pp. 109-131, Instituto Nazionale di Alta Matematica Francesco Severi, Rome, 1980.
9. C. W. CRYER AND M. A. H. DEMPSTER, SIAM J. Control Optim. I8 (1980), 76.

280 CRYER ET AL.

10. G. DUVAUT AND J. L. LIONS, “Inequalities in Mechanics and Physics,” Dunod, Paris, 1976.
11. P. M. FLANDERS, in “Supercomputers,” Infotech International, London, 1979, 117.
12. P. M. FLANDERS, D. J. HUNT, S. F. REDDAWAY, AND D. PARKINSON, in “High Speed Computer and

Algorithm Organization” (D. J. Kuck, Ed.), Academic Press, New York, 1977.
13. P. W. FRANCE, J. of Hydrology 21 (1974), 381.
14. R. GLOWINSKI, Rendiconti di Mathematics 14 (1971), Universita di Roma.
15. R. W. GOSTICK, ICL Tech. J. 1 (1979), 116.
16. D. HELLER, SIAM Rev. 20 (1978), 740.
17. D. J. HUNT, “Numerical Solution of Poisson’s Equation on an Array Processor Using Iterative

Techniques,” Report No. CM21, International Computers Limited, Research and Advanced
Development Centre, Stevenage, 1974.

18. D. J. HUNT, in “Supercomputers,” Infotech International, London, 1979, 205.
19. ICL Technical Publication No. 6918, “DAP Fortran Language,” 1979.
20. D. KINDERLEHRER AND G. STAMPACCHIA, “An Introduction to Variational Inequalities and their

Applications,” Academic Press, New York, 1980.
21. 0. M. MANGASARIAN, J. Optim. Theory Appl. 22 (1977), 465.
22. S. F. REDDAWAY, “A 3D Magnetohydrodynamics Code (3DMHD) on DAP,” Report No. CM59,

International Computers Limited, Research and Advanced Development Centre, Stevenage, 1976.
23. S. F. REDDAWAY, in “Supercomputers,” Infotech International, London, 1979, 309.
24. G. STAMPACCHIA, Russian Math. Surveys 29 (1974), 89.

