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The Distributed Array Processor (DAP) manufactured by International Computers Limited 
is an array of l-bit 200.nanosecond processors. The Pilot DAP on which the present work 
was done is a 32 x 32 array; the commercially available machine is a 64 x 64 array. We 
show how the projected SOR algorithm for the linear complementarity problem Aw > b, 
M? 3 0, w’(Aw - b) = 0, can be adapted for use on the DAP when A is the Jnite-dtsrence 
matrix corresponding to the difference approximation to the Laplace operator. Application is 
made to two linear complementarity problems arising, respectively, from two- and three- 
dimensional porous flow free boundary problems. 

1. INTRODUCTION 

An LCP (linear complementarity problem) is a problem of the form: Find an n- 
vector w = (wi) satisfying 

Aw>b, (l.la) 

w > 0, (l.lb) 

wT(Aw - b) = 0, (l.lc) 

where b = (bi) is a known real n-vector and A = (aij) is a known real n x n matrix. 
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Linear complementarity problems arise in many contexts (Balinski and Cottle [2 I). 
In particular, there is a connection between linear complementarity problems and 
variational inequalities (Cottle, Giannessi, and Lions [5], Cryer and Dempster [9]). 

Many problems in continuum mechanics can be reformulated as variational 
inequalities (Duvaut and Lions [IO], Kinderlehrer and Stampacchia [20]), which, 
when discretized, reduce to linear complementarity problems of the form (1.1) with 
special features. 

(1) A is large matrix, perhaps of order 25,000. 

(2) A is a finite-difference or finite-element matrix; in particular, A is sparse 
with a great deal of structure. (1.2) 

(3) A large percentage of the elements of the solution w are nonzero. 

Because of these special features, the standard methods of solving linear complemen- 
tarity problems are not very efficient, and methods of solution have been developed 
which take advantage of the structure of A: projected SOR (Cryer [7], Glowinski 
[ 141); modified block SOR (Cottle, Golub, and Sacher [6]); multigrid projection 
(Brandt and Cryer [3]); and generalizations of projected SOR (Mangasarian 1211). 
Cryer [8] briefly surveys much of this work. 

In the present paper we consider the use of the parallel computer DAP to solve 
linear complementarity problems with the features (1.2). The DAP (Distributed 
Array Processor, manufactured by International Computers Limited), which is an 
SIMD array of typically 64 X 64 processors, is described in Section 2. In Section 3 
we describe the implementation on the DAP of projected SOR to solve a linear 
complementarity problem derived from a two-dimensional porous flow free boundary 
problem, and in Section 4 we extend this work and solve a linear complementarity 
problem derived from a three-dimensional porous flow free boundary problem. In 
Section 5 we comment on possible future developments, and the overall conclusions 
are in Section 6. 

2. THE PILOT DAP (DISTRIBUTED ARRAY PROCESSOR) 

The present work was carried out on the Pilot 32 x 32 DAP at Stevenage, 
England, and we shall describe this machine first. A 64 x 64 version is available, and 
the minor differences between the two machines are indicated at the end of this 
section. 

DAP Hardware 

The essential features of the Pilot DAP hardware are as follows (Flanders et al. 
I12], Reddaway [23]): 

(1) A 32 x 32 array of identical processing elements (PEs) with a cycle time 
of 200 nanoseconds. 

581/47/2-l 
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(2) Each PE has a one-bit adder, 2K bits of storage, and three one-bit registers 
(a general purpose register for accessing data and performing arithmetic; a carry 
register; and an activity control register). 

(3) Each PE is connected to its four neighboring PEs (North, South, East, and 
West). In a given cycle all PEs access their neighbor in the same direction (deter- 
mined by the program). In addition, the PEs are linked by row and column highways 
which connect together all the PEs in each row and column. 

(4) There is a master control unit (MCU) which broadcasts instructions to all 
the PEs. All PEs can perform the same instruction simultaneously, but certain 
instructions are only effective if the activity control register is true. 

DAP Software 

A program to run on a DAP system normally comprises a standard FORTRAN 
program and a number of subroutines and functions written in an array processing 
extension of FORTRAN known as DAP-FORTRAN (Flanders [ 111, Gostick [ 151, 
ICL [ 191). The standard FORTRAN is executed by the host computer and provides 
mainly input-output and overall control. The DAP-FORTRAN is executed by the 
DAP and provides high speed computation. Data is shared between them using 
common blocks held in DAP store. Some features of DAP-FORTRAN are described 
below. 

In addition to the data types of FORTRAN, DAP-FORTRAN has two new data 
types: vector and matrix. With a 32 x 32 DAP, a vector has 32 components and a 
matrix has 32 x 32 components; the components can be real, integer, or logical. 

For example, the data statements 

REALU( ),V , >,W( ,5),X( , 93) 
INTEGERA( ,l),B( >,C( , 94) (2-l) 
LOGICAL FLAGS( ,2), MASK( , ) 

declare U (a real vector), V (a real matrix), W (an array of live real vectors), X (an 
array of three real matrices), A (an array of one integer vector), B (an integer vector), 
C (an array of four integer matrices), FLAGS (an array of two logical vectors), and 
MASK (a logical matrix). 

Expressions in DAP-FORTRAN consist of scalars, vectors, and matrices with the 
usual unary and binary operations. Operations on vectors and matrices are performed 
in parallel using all 32 x 32 PEs. 

Operations between a scalar and a vector or a matrix cause implicit expansion of 
the scalar to the necessary dimensions. For example, if M is a matrix of size 32 X 32 
and S is a scalar, then M = M + S causes S to be implicitly expanded to size 32 X 32 
with each element being equal to S; then the corresponding elements of “matrix” S 
and matrix M are added in parallel and assigned to M in parallel. 

Arrays of vectors and matrices may be used to construct more complex structures . 
To process a vector or matrix array requires performing calculations on the 
individual vectors or matrices in the array. 
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Selection and updating of parts of vectors and matrices can be performed using the 
powerful indexing capabilities of DAP-FORTRAN. Matrix sections can be specified 
by omitting subscripts along which all elements are to be taken. Using this, whole 
rows or columns can be selected from matrices. For example, M(Z, ) specifies the Ah 
row of matrix M. 

Shift indexing is a very useful feature of DAP-FORTRAN. For example, in a 
simple solution of Laplace’s equation on a 32 x 32 grid we wish to replace each 
element with the average of its four neighbors. This could be coded in FORTRAN 
as: 

DO 10 Z=2,31 

DO lOJ=2,31 

Y(Z, J) = (X(Z + 

10 CONTINUE 

l,J)+X(Z- l,.Z)+X(Z,.Z+ l)+X(Z,J- 1))/4.0 

Further code would be needed to handle elements on the edges of the matrix. 
The DAP-FORTRAN code is much simpler 

x = (x(+3 ) + xc-3 ) +-q , +) +x( ) -))/4.0. (2-l) 

The term X(+, ) uses shift indexing. In particular, X(+, ) specifies a matrix where 
the (I, J) element is the (Z t 1, J) element of X, for 1 < Z < 32 and 1 < .Z < 32. Thus, 
X(-t, ) contains all the south neighbors ofX. Edge values (corresponding to 
subscripts 0 or 33) are defined to be zero. As an alternative, cyclic geometry may be 
specified by using a GEOMETRY statement. 

Longer shifts can be performed by explicit system functions; for example, 
SHS(X,Z) shifts the matrix X to the south Z positions. Note that since all the 
updating is performed simultaneously, it is not necessary to write the results to 
another matrix. 

Logical matrices and vectors can be used to select elements from an array. For 
example, if we wished to update only certain elements of X in statement (2.1), we 
could set the corresponding elements of LM, a logical matrix, to true and all other 
elements of LM to false. That is, if X(Z, J) is to contain the average of its four 
neighbors, then LM(Z, J) is set to true. Otherwise, LM(Z, J) is false. Then the 
following statement performs the required task: 

X(LM) = (Jqt, ) t X(-, ) t X( , t) t X( , -))/4.0. 

DAP-FORTRAN has a number of useful system functions whose arguments and 
results may be scalars, vectors, or matrices. The ALTC, ALTR, MERGE, MAX, and 
ABS functions will be briefly described since these are used in the programs in this 
paper. 

‘ihe functions ALTC and ALTR return logical matrices. If C is the argument to 
ALTC, then the first C columns of the result matrix are set to false, the next C 
columns to true, the next C columns to false, etc. ALTR performs similarly for rows. 
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The function MAX (now named MAXV) returns a scalar equal to the largest 
number in its vector or matrix argument. The function ABS returns a vector or 
matrix containing the absolute value of every element in its argument. 

The function MERGE takes three arguments and returns a matrix. The first two 
arguments are matrices (or implicitly expanded scalars) and the third argument is a 
logical matrix. If the (I, .Z) element of the logical matrix is true then the (I, J) element 
of the result matrix is set equal to the (I, J) element of the first matrix; otherwise, it is 
set equal to the (I, J) element of the second matrix. 

Examples of DAP-FORTRAN programs are given in Sections 3 and 4. 

DAP Arithmetic 

When a DAP-FORTRAN program is executed by the DAP, expressions involving 
only scalars are executed sequentially, but operations on vectors and matrices are 
performed in parallel by the PEs. 

The DAP memory can be visualized as a cuboid, with 2 K horizontal planes, each 
plane being a 32 x 32 square of bits. The 32 x 32 array of PEs lies on top of the 
cube, and each column of 2 K bits belongs to the PE above it. 

Two storage modes are used in DAP-FORTRAN, vertical and horizontal. Scalars 
and vectors are stored in horizontal mode while matrices are held in vertical mode. 

In vertical mode, each number is held entirely within the store of one PE with 
successive bits in successive store locations. Thus, for an integer matrix, the sign bit 
of every element in the matrix would be held in the same store address of each PE. 

In horizontal mode, a number is spread along a row of PEs. Thus, a scalar 
occupies one row while a vector occupies 32 rows. DAP instructions are also stored 
in this format. 

All arithmetic is carried out using subroutines. Some operation times for 32 bit 
numbers are given in Table I. 

TABLE I 

Average DAP-FORTRAN Arithmetic Times for the Pilot DAP 

Operation Matrix Vector Scalar 

Floating point addition 

Floating point multiplication 

Floating point multiplication 
by a scalar 

One shift of a real matrix, 
e.g., x(+3 ) 

Move a floating point matrix 

Logical AND 

Logical mask 

14&18O~s 54p 2lps 

315/e 50/e 34p 

6Cb2OOps 40,us - 

15,Lls 2NS - 

15p 2PS 2P 
2w 2P 2P 
1 P 2YS - 

Note. Times are slightly different on production DAPs. 
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It will be noted that vector arithmetic is faster than matrix arithmetic. This is 
because a row of PEs is available for each vector component, while only one PE is 
available for each matrix component. 

Some of the quoted computation times are data dependent. In particular, matrix 
multiplication by a scalar typically varies from 170 ,US to 200 ps depending upon the 
distribution of zeros in the binary representation of the constant; for special scalars 
such as 0.5 or 3 the multiplication time can be as low as 60,~s. 

Host-DAP Interface 

The sequence of operations for compiling and running DAP programs is as 
follows: 

(a) The host computer compiles the host FORTRAN program and the DAP- 
FORTRAN subroutines into host and DAP machine codes respectively. 

(b) DAP machine code, incorporating all necessary low level subroutines, is 
loaded into DAP memory in horizontal mode where it occupies a few bits of each 
PE’s memory. Host machine code is loaded into the host memory. 

(c) Execution begins in the host and control is transferred to the DAP as 
required by subroutine calls. On completion of DAP processing, the host resumes 
execution at the point following the call. 

Detailed information on the Pilot DAP relevant to understanding the programs in this 
paper is given in the Appendix. 

The Production DAP 

The current production DAP is generally similar to the Pilot but differs as follows: 

(a) there are 4096 PEs arranged in a 64 x 64 array; 

(b) each PE has 4 K bits of memory; 

(c) arithmetic operations differ somewhat in timing but are overall a little 
faster; 

(d) coupling between host and DAP is more direct so the interface is simpler 
than indicated in the Appendix. 

3. NUMERICAL SOLUTION OF A TWO-DIMENSIONAL FREE BOUNDARY PROBLEM 

The flow of water through a porous dam is a well-known model problem. Water 
seeps from a reservoir of height H through a rectangular dam of width L to a 
reservoir of height h. Part of the dam is saturated and the remainder of the dam is 
dry. The wet and dry regions are separated by an unknown free boundary r which 
must be found as part of the solution (Fig. 3.1). 
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WO.0) C=(L,O) 

FIG. 3.1. Flow through a porous rectangular dam R. 

As shown by Baiocchi [ 11, the problem can be formulated as follows: Find u on 
the rectangle R = ABCF such that 

-Q2u > -1, on R, (3. la) 

U>O on R, (3.lb) 

u(-vu + l)=O on R; (3.k) 

and 

u= g=(H-y)2/2, on AB, 

= (h - YY/L on CD, 

= [H2(L -x) + h*x]/2L, on BC, 

= 0. on DFA. 

(3.2) 

The wet region of the dam consists of the points where u > 0 and the dry region 
consists of the points where u = 0. 

When the problem (3.1), (3.2) is approximated using the classical five point 
difference approximation for the Laplace operator, one obtains an LCP of the form 
(l.l), where the matrix A and right hand side b are the same as those that would be 
obtained if the Dirichlet problem 

.-v2u = -1 on R, 

u=g on 8R 
(3.3) 

were approximated by the finite difference equation Aw = b. More precisely, let an 
M x N grid with gridlength dx be superimposed upon R, and let the values of u and g 
at the point ([j - 1 ] dx, [i - 1 ] dx) be denoted by uij and g,, respectively, for 1 < 
i<M and 1 <j,<N. Then (1.1) takes the form 



DISTRIBUTED ARRAY PROCESSORS 265 

4Wij-Wi+,,j-Wi-,,j-Wi,j+l-Wi,j-t~-(dX)z for 1 < i < it4, 1 < j < N, 
(3.4a) 

wij > 0 for l<i<M, l<j<N, (3.4b) 

wij(4Wij-Wi+,,j-Wi-~,j-Wi,j+~-wi,j-~ + (AX)*)=0 
for 1 <i CM, 1 <j< N, (3.4~) 

wij = gij for ((j- l)dx,(i- l)dx)E%. (3.4d) 

We discuss below two iterative methods for solving (3.4), the projected Jacobi 
method and the projected SOR method. The projected Jacobi method is much slower 
than the projected SOR method, but is trivial to implement on the DAP and serves as 
a useful introduction to DAP programming. 

TABLE II 
The DAP Subroutine JACOBI 

SUBROUTINE JACOBI 
LOGICALMASK( , ), B’.SIGN( , ) 

REAL W( , ),Z( , ) 

REAL INDEX( ) 
EQUIVALENCE( B’, WSIGN) 

Declare logical 32 x 32 matrices, MASK and 
WSIGN 

Declare real floating point 32 x 32 matrices W and 
Z 

Declare a real floating point 32-vector INDEX. 
Declare the logical matrix WSIGN equivalent to the 

first bit, the sign bit, of the matrix W. 
HEIGHT = 3 1.0 
WIDTH = 31.0 
DO 101= 1,32 
INDEX(I) = (32 - I)/31.0 
CONTINUE 
w=o 
TEMP = HEIGHT * HEIGHT t .5 
W( 1, ) = TEMP * INDEX 

W( , 1) = TEMP * INDEX * INDEX 
MASK = .TRUE. 
MASK( 1, ) = .FALSE. 
MASK(32, ) = .FALSE. 

MASK( , 1) = .FALSE. 
MASK( ,32) = .FALSE. 
DO50I= 1,100 
z= W(+, )+ W(-, )+ W( ,+) 

+w( ,-)-1.0 
W(MASK) = .25 * Z 
W(MASK .AND. WSIGN) = 0.0 

CONTINUE 
END 

Initialize INDEX vector. 

Clear matrix W 

Set values of the matrix W equal to g on bottom 
PC). 

Set values of the matrix W equal to g on left (AB). 

Set the matrix MASK to be true at interior points 
and false at boundary points. 

Start of main loop 
Sum neighbors and store in Z matrix. 

Transfer average to W at interior points. 
Project by setting W = 0 at points where MASK is 

true and the sign of W is negative. 
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TABLE III 

Statement Operations Time (us) 

Z=W(+, )+W(-, )+W( ,+) 
+ W( ,-)- 1.0 

W(MASK) = .25 * Z 

W(Mz4SK .AND. WIGN) = 0.0 

DO501=1,100 

4 floating point matrix 
additions/subtractions 

4 index shifts 
1 scalar-matrix assignment 

1 floating point matrix multiplication 
by a special constant 

1 logical mask 

1 logical AND 
1 logical mask 
1 scalar-matrix assignment 

640 
60 
15 

70 
1 

2 
1 

15 

7 - 
811 - 

The Projected Jacobi Method 

Let W(O) = (wi;‘) b e an initial guess for the solution w = (wij) of (3.4). One 
generates a sequence of approximations wck) = (w$“), k = 1, 2,..., 

Z!k) zz w!k) 
IJ I-l,j+ wlk:l,j 1,~ I + W!k!- + WV! 

,,J+ 1 - (dx>2Y (3.5a) 

W!k+ l/2) - IZ(k) 
lJ -4 ijy (3.5b) 

w!k+ ‘) = max(O, WC+ I”)), 
IJ for 1 <i < M and 1 < j < N; (3.5c) 

wj;+ ‘) = gij, for ((j - 1)4x, (i - 1 )dx) E aR. (3.5d) 

It is known that the projected Jacobi method will converge (Mangasarian [2 1 I). 
If M < 32 and N < 32, then the gridpoints can be regarded as a subset of a 

32 x 32 array, and one PE can be associated with each gridpoint. Defining wck), 
W(k+ I), and Z(k) as real DAP-FORTRAN matrices, the computation (3.5) is trivial to 
implement on the DAP. 

In Table II we list a DAP subroutine JACOBI which solves the dam problem for 
the case h = 0, H = 31, L = 31, M = N = 32, and dx = 1. This subroutine could be 
called by a host program, which could then print the answers in the matrix W. 

Using the operation times given in Table I, we can readily estimate the time 
required per iteration in the main loop of the JACOBI subroutine (see Table III). 

From Table III we see that one projected Jacobi iteration over the whole 32 X 32 
grid requires 8 11 ,us. 

The Projected SOR Method 

Let w(O) = (w$“) b e an initial guess for the solution w = (wij) of (3.4). In the usual 
implementation of projected SOR, one generates a sequence of approximations 
wck) = wij) as follows: 
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z!k’ = wy;,:, + Wj$j + wyy + w$+ 1 - (Ax)*, 
V 

(3.6a) 

w!!+“*) = w$’ + (@’ - 4$)/4 
IJ 

= (o/4) zp + (1 - co) wp, (3.6b) 

WIT+ l) = max{O, wj$!+ l/*)}, for 1 (i < M and 1 < j < N, (3.6~) 

where o is a constant, the over-relaxation parameter. 
It is known that the iteration (3.6) converges for all initial guesses w(O) iff 

0 < w < 2 (Cryer [ 71, Glowinski [ 141). The implementation (3.6) is not suitable for 
parallel computation because the new values wckt ‘) cannot be computed 
simultaneously* w!k+ ‘! and w!“~?‘~ must be known before wiJ+‘) can be computed. 

There is, ho\;re:er,i’i simple ‘but ingenious way of making SOR suitable for parallel 
computation. In the implementation (3.6), we order the gridpoints by rows and 
columns (Fig. 3.2a). Instead, let us visualize the gridpoints as forming a red-black 
chess board and number first the red points and then the black points (Fig. 3.2b). 

Applying projected SOR to the points numbered as in Fig. 3.2b we find that each 
projected SOR iteration can be broken down into two stages: in the red (first) stage 
projected SOR is applied to the red points; and in the black (second) stage projected 
SOR is applied to the black points. 

Red stage. 

Z$-‘) = W;k;;‘jc’o + w;~;‘j”“’ + wj~i’f;‘“’ + Wjfjb’;ck) - (A~>*, (3.7a) 

WI?; “2,wd) = ((jJ/4) zj$red) + (1 - w) Wjyd), (3.7b) 

W(kk’.‘ed) = max(o, wjfj+ Wed)}. 
1.J (3.7c) 

Black stage. 

Z+black) = W!k+ ITred) + Wjkt I:rW + Wjkji$.red) + W;kjf_lired) _ (42, 

WjJ+ I;*,black) = (;;;;zj;.“‘.c”’ ; ;I _ o> WG&lack), 

(3~~) 

(3.8b) 

(3%) 

Each stage can be carried out in parallel, with the red (black) processors working 
and the black (red) processors idle. 

FIG. 3.2. Ordering of gridpoints (for a 4 x 4 grid) (a) usual, (b) red (0) and black (0). 
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This idea of using the red-black ordering for parallel processors has appeared 
several times in the literature (Heller [ 161). Its use on DAP was first suggested by 
Hunt [ 171. (In Europe, white-black chessboards are more usual than red-black ones). 

In Table IV we list a DAP-FORTRAN subroutine PROJSOR for implementing 
the heart of the algorithm (3.7), (3.8). The subroutine is provided with several input 
parameters with obvious meanings. In addition, two logical matrices are provided as 
input: the logical matrix MASKMASK is true at gridpoints in the interior of the dam, 
and false elsewhere; the logical matrix MASK is true at black gridpoints and false at 
red gridpoints. Finally, the values of the real matrix W at the boundary points c?R 
must be computed using (3.4d) before PROJSOR is called. 

The computation time for one pass through the main loop of the subroutine 

TABLE IV 

The DAP Subroutine PROJSOR 

COMMON/RMAT/W( , ) 
COMMONjRSCAfMAX DIFF, OMEGA, EPSILON, DAM WIDTH, DAM HEIGHT 
COMMON/ISCA/NUMB ITERATIONS, NUMB ROWS, NUMB COLS 
COMMON/SUBLMAT/MASK( , ), MASK MASK( , ) 
REAL W, MAX DIFF, OMEGA, EPSILON, DAM WIDTH, DAM HEIGHT 
LOGICAL MASK, MASK MASK 
INTEGER NUMB ITERATIONS, NUMB ROWS, NUMB COLS 

REAL Z( , ), GRIDZ, W( , ), SA VE W( , ) 
REAL ALPHA, BETA 
INTEGER NUMB TIMES 
LOGICAL DONE, WSIGN( , ) 
EQUIVALENCE (WSIGN, W) 

W( WSIGN) = 0.0 

Local variables. 

ALPHA = OMEGA * .25 
BETA = 1.0 - OMEGA 
GRID2 = (DAM HEIGHT/NUMB ROWS) ** 2 

40 SAVEW=W 
NUMB ITERATIONS = NUMB ITERATIONS + 1 
DO 45 NUMB TIMES = I, 2 

1 MASK(MASK MASK) = .NOT. MASK 

2 z= w+ W(-,-) 
3 Z=Z(+, )+Z( ,+)-GRID2 
4 W(MASK) = ALPHA * Z + BETA * W 

5 W( WSIGN .AND. MASK MASK) = 0.0 
45 CONTINUE 

MAX DIFF = MAX(ABS(SA VE W - W)) 

DONE = (MAX DIFF .LE. EPSILON) 
IF (NOT. DONE) GO TO 40 

RETURN 

Ensure that W is nonnegative everywhere. 
Calculate the constants that are needed 

later on. 

Start main loop. 
Save the old value of W. 

Reverse state of MASK. 

Calculate Z on only the red (or black) 
points as determined by the MASK. 

Project 

Find maximum difference between old 
and new. 

Check if desired accuracy is attained. 
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TABLE V 

Estimated Computation Time for the Inner Loop of PROJSOR 

Statement Operations Time @s) 

I MASK(MASKMASK) = .NOT. MASK 

2 z= w+ W(-,-) 

3 Z=Z(+, )+Z( ,+)-GRID2 

4 W(MASK) = ALPHA * Z 
+BETA* W 

5 W( WSZGN .AND. MASK 
MASK) = 0.0 

DO 45 NUMB TIMES = 1,2 

1 logical mask 
1 logical negation 
1 logical store 

1 index shift two places 
1 floating point matrix addition 

2 index shifts 
1 floating point matrix addition 
1 floating point matrix 

subtraction 
1 scalar-matrix assignment 

1 floating point matrix addition 
2 floating point matrix 

multiplications by a constant 
1 logical mask 

1 logical AND 
1 logical mask 
1 scalar-matrix assignment 

21 
160 

30 
160 

160 
15 

160 

PROJSOR is estimated in Table V, from which it follows that each PROJSOR 
iteration, which requires two passes through the loop, takes about 2 x 1135 ps = 
2.27 ms. To check this estimate, the average execution time per iteration in the 
subroutine PROJSOR was obtained by measuring (on a real external physical clock) 
the time required for a large number of iterations for the dam problem with H = 24, 
h = 0, L = 16, and Ax = 1. (This particular problem was chosen because it is a test 
problem which has been solved by many authors). The measured time per iteration 
on the Pilot DAP was 2.2 ms, as compared to the estimated time of 2.27 ms. 

We conclude this section with some comments. 

(1) For comparison, the dam problem with H = 24, h = 0, L = 16, and Ax = 1 
was also solved on the UNIVAC 1180 at the University of Wisconsin, using the 
conventional ordering of gridpoints and an optimizing compiler with single precision 
arithmetic (36 bits), and the time per iteration was found to be 5.29 ms. For this 
problem the Pilot DAP was therefore 2.4 times faster than the UNIVAC 1180. 

It should be noted that for this problem only 25 x 17 = 425 of the 1024 DAP PEs 
were used. On a 31 x 3 1 region the Pilot DAP would be six times faster than the 
UNIVAC 1180. 

(2) In general, one expects to be able to predict DAP execution times to within 
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about 5 o/, because DAP programs have little overhead and spend almost all their 
time in computation. 

(3) Since DAP floating point operations are relatively expensive, it is 
worthwhile optimizing the code. (Readers who used early computers which also had 
relatively slow arithmetic operations may feel nostalgic). An example of such 
optimization occurs in the subroutine PROJSOR (see Table IV). The computation 
(3.7a) could have been implemented as: 

z= WC+, )+ w(-, )+ W( ,+)+ W( ,-)-GRID2 

which requires three additions and one subtraction, and takes 

4(15) + 4(160) + 15 = 715 ps. 
(shifts) (additions) (scalar-matrix assignment) 

By sharing intermediate results between PEs, however, the amount of arithmetic can 
be reduced; the implementation in PROJSOR is 

z= w+ W(-,-) 

Z=Z(+, )+Z( ,+)-GRZD2, 

which is estimated at only 546,~. It should be noted that both implementations use 
only half the PEs for arithmetic at any one time. Larger grids or three-dimensional 
problems (see Section 4) can use all the PEs simultaneously. 

(4) The UNIVAC 1180 was used for comparison, because this was readily 
available. It would be of interest to have timings on a computer such as the Cray 1. 

4. NUMERICAL SOLUTION OF A THREE-DIMENSIONAL FREE 
BOUNDARY PROBLEM 

A three-dimensional extension of the dam problem of Fig. 3.1 was introduced by 
Stampacchia [24] ( see also France [ 13 I). Water seeps through a porous dam in a 
rectangular channel of width u and height H. The walls of the dam are vertical but 
the thickness of the dam is variable, so that the dam occupies the region 

Q, = 0, x (0, fq, (4.1) 

where the horizontal cross section Q, is of the form 

Q, = ((4 v): 0 < x ‘c a, cpl(X> < Y < ~z(X>l. 

In the specific problem considered here, .R, is the L-shaped region 

Q, = (0,ED)x (0,FE) U [ED,AP)x (O,AB), 

(4.2) 

(4.3) 
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I 

FREE SURFACE 

UPSTREAM 

DOWNSTREAM 

FIG. 4.1. Flow through a three-dimensional porous dam with L-shaped horizontal cross section. 

where the points A, B, C, D, E, and F are as shown in Figure 4.1. The upstream 
water height is H and the downstream water height is h. 

As shown by Stampacchia 1241, the problem can be formulated as follows: Find u 
on the region LI, such that: 

-v% = -[u,, + uyy + u,,] > -1 in Q,, 

and 
u= g=+(H-z)*, 

= 4(h - z)2, 

= 0, 

= 0, 

and 
= a(4 Y), 

u, = u, = 0, 

U>O in Q,, 

u(-v*u+ l)=O in Q,; 

on the upstream face AA, F, F, 

on the downstream face below water level 
BoW’,E,E,D,C,B, > 

on the downstream face above water level 
B,C,D,E,EDCB, 

on the top ABCDEF, 

on the bottom A,B,C,D,E,F,; 

on the sides ABB,A, and EFFoE,. 

(4.4a) 

(4.4b) 

(4.4c) 

(4.5) 

(4.6) 

Here a(x, y) is the solution of the two-dimensional mixed boundary value problem 

(4.7a) 

a = iH2, 

= ;h2, 

on A$,,, 

on B, COD&, , 
(4.7b) 

a, = an = 0, on A,B, U E,F,. (4.7c) 
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To solve problem (4.4t(4.7) numericaly, we introduce a grid with Ax = Ay = AZ 
and denote the approximation to u( [i - 2]Ax, [j - 1 ]Ay, [k - 1 ]Az) by wijk, and the 
approximation to a([i - 2]Ax, [j- l]Ay) by wii = wijl, for 2 <i <M - 1 and 1 < 
j < N. As in Bruch [4], the computation proceeds in two stages. 

Sruge I. The two-dimensional problem (4.7) is approximated by replacing 
differential equation (4.7a) by the difference equations 

4W[j- Wi+l,j- Wi-l,j- Wi,j+l - Wi,,j-1 =O* (4.8) 

The Dirichlet boundary conditions (4.7b) are satisfied by computing and storing the 
values of wij, = aij on A,F, and B,C,D,E,. The Neumann conditions (4.7~) are 
satisfied by introducing two fictitious rows of gridpoints, adjacent to A,B, and E,F, 
respectively, and requiring that the values of w on a fictitious row should be equal to 
the values of w on the corresponding interior row; that is, w,~ = wu and w,,,.~ = 
W M-z,jv for 1 < .i<N. 

The resulting system of equations is solved using a simple modification of the 
subroutine PROJSOR (see Table IV): the term -GRID2 is dropped from statement 
number 3; statement number 5 is deleted; and the statements 

Wl, ) = w3, 1, 

W(M, > = WV4 - 2, 1, 
(4.9) 

are inserted between statements number 1 and 2, so as to make the values at the 
fictitious points equal to the corresponding interior values; 

Stage II. The three-dimensional problem (4.4) is approximated by the LCP 

6Wi,j,k > wi+ I,j,k + Wi-l,j,k + wi,j+ 1.k + Wi,j-l.k 

+ Wi.j,k- I + wi j k+ I - (AX>*~ 1 1 (4.lOa) 

Wi,j,k > 0, (4. lob) 

Wi,j,k[6Wi,j,k - wit 1,j.k - Wipl,j,k - wi,j+ 1.k - wi,j- 1.k 

-Wijk+l-Wijk-l+(Ax)*]=O. 1 9 , , (4.1Oc) 

The Dirichlet boundary conditions (4.5) are readily imposed, while the Neumann 
conditions (4.6) are treated by introducing fictitious sides parallel to the sides 
ABB,A, and EFF,E,, and requiring that the values of w on the fictitious sides be 
equal to the values of w at the corresponding interior points. 

To solve the LCP (4.10) we introduce a three-dimensional red-black partitioning of 
the gridpoints, so that each red (black) gridpoint has six black (red) neighbors. (It 
should be noted that the red/black ordering on any horizontal plane is the negation 
of the red/black orderings on the adjacent horizontal planes.) As in the two- 
dimensional problem treated in Section 3, each projected SOR iteration can be 
broken down into two stages: a red stage in which projected SOR is applied to all the 
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red points in the three-dimensional w array, followed by a similar black stage. In 
detail, 

Red stage. 

z$‘ed) = wjy;!i”.‘k”’ + w;“y;;;’ + wy;yy;“’ + wjy;y 
+ W!k:black) 

I,J,k+ 1 + w;yp:) - (Ax)*, 

wl,+; ‘/2*red) = (4fj) $ired) + (1 - 0) w;?ired), 

w!Jkkt ‘vred) = max{(), wiTk+ 1/2,red)}. 

Black stage. 

(4.1 la) 

(4.1 lb) 

(4.11c) 

Zgb’ack) = wj$yy + w;y$’ + wi,j+,,k (kt I,red) + W!k+l.red) 
,,J 1.k 

+ w;fjjtkl;‘l’d) + wjfjy,r;d) - (Ax)*, 

w$J ‘/*.black) = (46) Z;;i’-“ac’o + (1 _ w) Wjfi”lack), 

(4.12a) 

(4.12b) 

To implement the algorithm (4.1 l), (4.12) it was assumed that the dimensions of 
L!, were such that the gridpoints on any horizontal cross section of the dam could be 
regarded as a subset of a 32 x 32 array. The solution w was stored as an array of 
matrices, the matrix W( , , k) containing the values of w on the horizontal plane at a 
height (k - 1) AZ. To control the parallel computation, two logical matrices were 
used: MASKRB which is true at interior red gridpoints in the current horizontal cross 
section and false otherwise; and MASKMASK which is true at interior points of Q, 
and false otherwise. 

The algorithm (4.11), (4.12) was implemented in two ways. 

Implementation 1. During each red (black) stage the horizontal planes were 
updated in turn, and on each plane the red (black) points were updated in parallel. 

The computation of ztk) requires live additions and one subtraction. Given an 
unlimited number of processors, n additions/subtractions require log, n steps, so that 
six additions/subtractions require at least three steps. By taking advantage of idle 
PEs, and remembering that, on the DAP, shift operations are much faster than 
arithmetic operations, the DAP-FORTRAN subroutine in Table VI is an efficient 
implementation of (4.1 l), (4.12) (compare Table IV). A full listing of the program is 
available upon request from the authors. 

The subroutine in Table VI uses the functions SHS(outh) and SHN(orth) to shift 
W instead of the equivalent, but slower, statements (4.9). 

Implementation 2. As in the three-dimensional magnetohydrodynamic code of 
Reddaway [22] we rearrange the values of w. Horizontal planes are considered in 
pairs, and the red points on each even-numbered plane are exchanged with the 
corresponding black points on the next odd-numbered plane. As a result, instead of 
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TABLE VI 

First Implementation of (4.11) and (4.12) 

C THE MAIN LOOP - PROCESS ALL THE 2 PLANES 

SUBROUTINE MAIN LOOP 
COMMON/ISCA/TOPPLANE, M 
COMMONIISCAlDAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT 
INTEGER TOPPLANE, M 
INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS 
REAL DAMEPSILON, BOTTOMEPSILIN, OMEGA, MAXDIFF 
COMMONJRSCAIDAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF 
COMMON/RMAT/ W( , (25) 
COMMON/SUBLMAT/MASKRB( , ), MASKMASK( , ) 
LOGICAL MASKRB, MASKMASK 
REAL SA=W( , 1, Z( , 1, Zl( > ) 
REAL MAXSOFAR, ALPHA, BETA, WIDGRIDZ, WIDTHGRID 
INTEGER NUMBTIMES 
LOGICAL TEMPMASK( , ), DONE, WSIGN( , ) 
EQUIVALENCE( WSIGN, Z) 
ALPHA = OMEGA * 1.0/6.0 
BETA = 1.0 - OMEGA 

C 
C WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET TO 1.0 
C 

NUMBITERS = 0 
WIDTHGRID = 1.0 
WIDGRID2 = WIDTHGRID * WIDTHGRID 

C SAVE THE MASKRB FOR LATER RESTORATION 
C 

TEMPMASK = MASKRB 

MAXDIFF IS THE MAXIMUM DIFFERENCE BETWEEN SAVEW 
C AND W( , ,K)AFTER W( > >K) 
C HAS ITS RED (OR BLACK) VALUES CHANGE (FOR ALL K) 

I MA XDIFF = 0.0 
NUMBITERS = NUMBITERS + 1 
MASKRB = TEMPMASK 
DO 30 NUMBTIMES = 1,2 

C 
C ITERATE FROM THE 2ND PLANE TO THE TOP PLANE 

DO 20 K = 2, TOPPLANE 
SAVEW= W( , ,K) 

C 
C REVERSE RED/BLACK FOR SUCCESSIVE PLANES 
L 

MASKRB(MASKMASK) = .NOT. MASKRB 

Table conrinued 
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TABLE VI (continued) 

215 

C 
C SUM THE SIX NEIGHBORS 

SAVEW(1, ) = SHN(S4 VEB’, 2) 
SA VEW(M, ) = SHS(SA VEB’, 2) 
Z=SAVEW(-,-) 
Zl = SAVEW 
Zl(MASKRB)= W( , , K + 1) 
Z(MASKRB) = W( , , K - 1) 
z=z+z1 
Zl=Z(,f) 
Zl(.NOT. MASKRB) = - WIDGRIDZ 
z=z+z1 
z=z+z(+, ) 

C 
C STORE THE AVERAGE OF THE SIX NEIGHBORS IN W 
C ONLY IN THE RED (OR BLACK) CELLS 
C 

Z=ALPHA*Z+BETA*SAVEW 
Z( WSIGN) = 0.0 
W(MASKRB, K) = Z 

C 
C FIND THE MAXIMUM DIFFERENCE ON THIS PLANE 
C 

MAXSOFAR = MAX(ABS(SA VE W - Z), MASKRB) 
IF (MAXSOFAR .GT. MAXDIFF) MAXDIFF = MAXSOFAR 

20 CONTINUE 
C 
C REVERSE STATE OF ORIGINAL MASKRB FOR THE 2ND PASS 
C THROUGH THE PLANES 
C 

MASKRB(MASKMASK) = .NOT. TEMPMASK 
30 CONTINUE 

DONE = (NUMBITERS .GT. DAMMAXITERS) .OR. (MAXDIFF .LE. DAMEPSILON) 
IF (NOT. DONE) GOT0 1 
MASKRB = TEMPMASK 
RETURN 
END 

C 
C 

having n planes, each containing red and black points in a checkerboard pattern, we 
have n/2 planes of red points interleaved with n/2 planes of black points. This makes 
it possible to use simultaneously all interior PEs for arithmetic. 

The corresponding subroutine is given in Table VII. In the full program, to save 
time, the test for convergence was executed only every TIMES iterations, where 
TIMES is an input parameter. 

The subroutine in Table VII assumes that there is an even number of planes. To 

581/47/2-l? 
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TABLE VII 

Second Implementation of (4.11) and (4.12) 

THE MAIN LOOP - PROCESS ALL THE Z PLANES 

SUBROUTINE MAIN LOOP 
COMMON/ISCA/TOPPLANE, M 
COMMON/ISCAlDAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, NUMBOT 
INTEGER TOPPLANE, M 
INTEGER DAMMAXITERS, BOTTOMMAXITERS, NUMBITERS, TIMES 
REAL DAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF 
COMMONjRSCAlDAMEPSILON, BOTTOMEPSILON, OMEGA, MAXDIFF, TIMES 
COMMONIRMA T/W( , ,25) 
COMMON/SCJBLMAT/MASKRB( , ), MASKMASK( , ) 
COMMON/ WORK/Z, WK 
LOGICAL MASKRB, MASKMASK 
REAL sAVEW( > ),Z( 3 )>Zl( 3 1, WKPl( > 1, WK( 1 ),MAXD( , ) 
REAL MAXSOFAR, ALPHA, BETA, WIDGRIDZ, WIDTHGRID 
INTEGER NUMBTIMES 
LOGICAL TEMPMASK( , ), DONE, WSIGN( , ), TEST, NOTTEST 
EQUIVALENCE( WSIGN, Z), (Z, Zl), (WK, WKPl) 

ALPHA = OMEGA * l.OJ6.0 
BETA = 1.0 - OMEGA 

C 
C WIDTH OF GRID (I.E. ONE UNIT SQUARE) IS SET TO 1.0 
C 

NUMBITERS = 0 
WIDTHGRID = 1.0 
WIDGRID2 = WIDTHGRID * WIDTHGRID 

C 
c 
L 

1 TEST = TIMES .EQ. I 
NOTTEST = .NOT. TEST 
ITIMES = TIMES 
MAXD = 0.0 

C 

C ALTER ALL THE ODD NUMBERED PLANES: 
2 KM2=1 

DO 20 K = 2, TOPPLANE, 2 
SAVEW= W( , ,K+ 1) 
WK= W( , ,K) 
WK( 1, ) = SHN( WK, 2) 
WK(M, ) = SHS( WK, 2) 
Z = WK + WK(--, -) 
Z = (Z(+, ) + Z( , +) t WK + MERGE( W( , , KM2), W( , , K t 2), MASKRB) 

- WIDGRIDZ) * ALPHA + SA YEW * BETA 
Z( WSIGN) = 0.0 
W(MASKMASK,K+ l)=Z 
IF (NOTTEST) GOT0 20 
Zl =ABS(SAVEW-Z) 
MAXD(Z1 .GT. MAXD) = Zl 
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TABLE VII (continued) 

20 KM2=K 
C 
C 
C ALTER ALL THE EVEN NUMBERED PLANES: 

277 

21 
C 
C 

C 
3 

C 

4 

DO 21 K = 2, TOPPLANE, 2 
SAVEW= W( , ,K) 
WKPl=W(, ,K+l) 
WKPl(1, )=SHN(WKPl,2) 
WKPl(M, ) = SHS(WKPl,2) 
2 = WKPl + WKPl(-, -) 
2 = (Z(+, ) + Z( , +) + WKPl f MERGE(W( , , K + 3), W( , , K - I), MASKRB) 

- WIDGRIDZ) *ALPHA + SAVEW * BETA 
Z( WSIGN) = 0.0 
W(MASKMASK, K) = Z 
IF (NOTTEST) GOT0 21 
Zl =ABS(SAVEW-Z) 
MAXD(Z1 .GT. MAXD) = Zl 
CONTINUE 

ITIMES = ITIMES - 1 
IF (ITIMES .GT. 1) GOT0 2 
IF (ITIMES .EQ. 0) GOT0 3 
TEST = .TRUE. 
NOTTEST= .FALSE. 
GOT0 2 

NUMBITERS = NUMBITERS + TIMES 
MAXDIFF = MAX(MAXD, MASKMASK) 
IF (MAXDIFF .LT. DAMEPSILON) GOT0 4 

IF (NUMBITERS .LT. DAMMAXITERS) GOT0 1 
RETURN 
END 

avoid additional testing, it is assumed that a copy of the top plane is stored above the 
top plane. 

The two implementations were run on the problem with H = 10, h = 0, AF = 
FE = 20, CD = BC = 10, which was chosen because it had previously been solved by 
Bruch 141. For comparison, the problem was also solved on the UNIVAC 1180 using 
single precision arithmetic and optimized FORTRAN code. The measured 
computation times per projected SOR iteration (including both red and black stages) 
were: 

Implementation 1: 32 ms, 
Implementation 2: 16.0-l 8.2 ms (dependent on frequency of convergence tests), 
UNIVAC 1180: 34 ms, 



278 CRYER ET AL. 

so that Implementation 2 on the Pilot DAP is about two times faster than the 
UNIVAC 1180. The estimated time per SOR iteration (Implementation 2) was found 
as in Table V, and was found to lie between 15.4 and 17.4 ms, depending upon the 
frequency of convergence tests. 

For this problem, only 383 (i.e., 21 X 23 - 10 X 10) of the 1024 PEs were used. 

5. FUTURE POSSIBILITIES 

(a) For purposes of comparison we have used previously published problems 
but they have dimensions which do not match the DAP array closely. In many prac- 
tical problems, the resolution would be tailored to the DAP dimensions to achieve 
higher performance. 

(b) The programs presented are readily extensible to larger problems on 
correspondingly larger DAPs such as the production 64 x 64; it is only necessary to 
change the boundaries. The time to process one plane would be unchanged. 

(c) Performance on small three-dimensional problems can be improved by 
mapping several problem planes onto one DAP matrix. 

(d) Problems with large horizontal dimensions can be mapped with each PE 
holding a small neighborhood group of points. Performance improves because each 
PE holds both black and red points (Hunt [ 181). 

(e) Very large problems cannot be held entirely within DAP store. For 
example, with four times as many points in a horizontal plane as there are PEs, the 
limit is about 26 planes with 4 K bits per PE or about 122 planes with 16 K bits per 
PE. With backing store, the transfers rates with N active problem planes in the DAP 
can be minimized by advancing each plane (N - 2)/2 iterations per backing store 
fetch. Hence it should be possible to achieve a balance between input-output and 
processing times (Reddaway [ 221). 

(f) Problems of this type offer possibilities for using fixed point arithmetic 
(with suitable scaling) and using low precision for computing the iterative 
corrections. This is much faster than floating point work and performance 
improvements as large as a factor of ten are predicted without loss of accuracy in the 
final solution. 

6. CONCLUSIONS 

We have demonstrated that two- and three-dimensional linear complementarity 
problems can be solved on DAP with high performance and easy programming using 
a version of projected SOR. There is scope for even higher performance and for 
tackling a wide range of problem sizes. 
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APPENDIX: THE PILOT HOST-DAP INTERFACE 

In the Pilot DAP system, the store of the DAP is not an integral part of the host’s 
store as with the production DAPs. It is therefore necessary to explicitly move data 
between the host and DAP, and this is achieved by using standard host FORTRAN 
subroutines. The subroutine names begin with DAPTO or DAPFROM depending on 
whether they move data into or out of the DAP. The remaining letters of the name 
indicate the type (integer or real denoted by I or E) and rank (scalar, vector or matrix 
denoted by S, V, or M) of the variable transferred. Parameters of DAPTO and 
DAPFROM give the name of the host program variable and the location within the 
DAP in terms of the name of the common area and the offset from the start of this 
area. 

Initiation of DAP processing is also less direct on the Pilot system with DAP- 
FORTRAN subroutines being called via the standard host FORTRAN subroutine 
DAPGO. A statement of the form: 

CALL DAPGO(‘DAPSUB’, N) 

will suspend execution of the host FORTRAN and transfer control to the DAP- 
FORTRAN subroutine DAPSUB. Execution of the host FORTRAN is resumed after 
DAPSUB and any further levels of DAP-FORTRAN subroutines have been 
executed. The parameter N gives the maximum number of seconds allowed for DAP 
processing. 
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